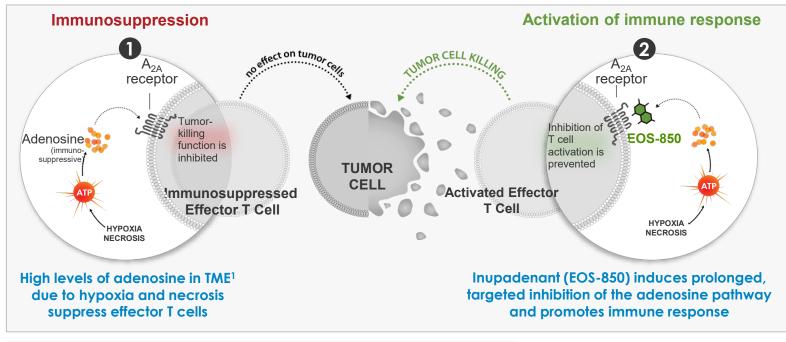
Phase 1 trial of the adenosine A2A receptor antagonist inupadenant (EOS-850):

Update on tolerability, and antitumor activity potentially associated with the expression of the A2A receptor within the tumor.

Laurence Buisseret¹, Sylvie Rottey², Johann De Bono³, Arianne Migeotte⁴, Brant Delafontaine², Thubeena Manickavasagar³, Chiara Martinoli⁵, Noémie Wald⁵, Maura Rossetti⁵, Esha Gangolli⁶, Erol Wiegert⁵, Nicola McIntyre⁵, Joanne Lager⁶, Jean-Pascal Machiels⁴


- 1. Department of Medicine, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
- 2. Department of Medical Oncology, Drug Research Unit Ghent, Universitair Ziekenhuis Ghent, Ghent, Belgium
- 3. Drug Development Unit, The Institute of Cancer Research and The Royal Marsden Hospital, Sutton, UK
- 4. Department of Medical Oncology and Head and Neck Surgery, Cancer Center, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Experimentale (Pole MIRO), Universite Catholique de Louvain, Brussels, Belgium
- 5. iTeos Therapeutics SA, Gosselies, Belgium
- 6. iTeos Therapeutics Inc., Cambridge, MA 02142, USA

Author Disclosures

- L. Buisseret: Institutional research grant (AstraZeneca), institutional travel grant (Roche), speaker honoraria (BMS)
- J. De Bono: Advisory board member (Amgen, Astellas, AstraZeneca, Bayer, Bioxcel Therapeutics, Boehringer Ingelheim, Cellcentric, Daiichi, Eisai, Genentech Roche, Genmab, GlaxoSmithKline, Harpoon, Janssen, Menarini Silicon Biosystems, Merck Serono, Merck Sharp & Dohme, Orion Pharma, Pfizer, Qiagen, Sanofi Aventis, Sierra Oncology, Taiho, Terumo, Vertex Pharmaceuticals); institutional support (Astellas, Astra Zeneca, Bayer, Cellcentric, Daiichi, Genentech Roche, Genmab, GlaxoSmithKline, Harpoon, Janssen, Merck Serono, Merck Sharp & Dohme, Orion Pharma, Pfizer, Sanofi Aventis, Sierra Oncology, Taiho, Vertex Pharmaceuticals); inventor patent 8, 822,438 (no financial interest); NIHR Senior Investigator
- A. Migeotte, S. Rottey, T. Manickavasagar, B. Delafontaine: No disclosures
- J-P. Machiels: Advisory board member or speaker with honoraria (institutional management; Pfizer, Roche, Astra/Zeneca, Bayer, Innate, Merck Serono, Boehringer, BMS, Novartis, Janssen, Incyte, Cue Biopharma, ALX Oncology, iTeos, eTheRNA); travel expenses (Amgen, BMS, Pfizer, MSD); data safety monitoring board with honoraria (Debio, Nanobiotix, Psioxus); funding to institution for research support (all companies); uncompensated advisory role (MSD); EORTC (investigator and study coordinator, H & N group Chair-elected)
- C. Martinoli, N. Wald, M. Rossetti, E. Gangolli, E. Wiegert, N. McIntyre and J. Lager are employed by iTeos Therapeutics and may own stock/stock options in the company.

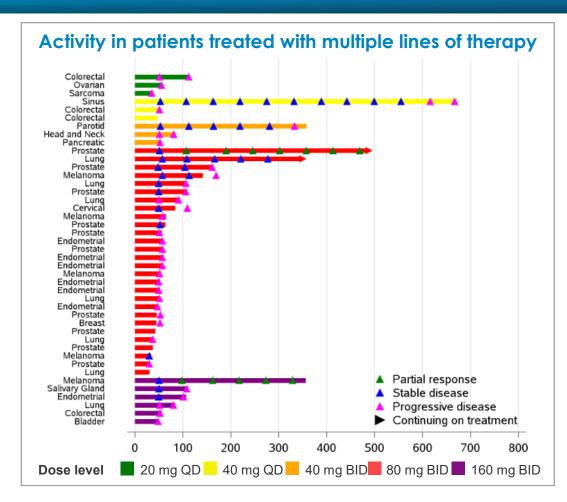
Background and Methods

Primary Objectives

- Safety and tolerability of inupadenant as a single agent and in combination with pembrolizumab and/or chemotherapy
- Define MTD and RP2D of inupadenant as monotherapy or in combination

Secondary Objectives

 PK and antitumor activity of inupadenant as monotherapy


Exploratory • Objectives

PD activity and association of plasma PK, safety, efficacy and PD biomarkers of inupadenant as monotherapy

	Monotherapy Dose-Finding	Safety and PK/PD Expansions (N=22)
Study Design	Dose Escalation (Completed)	Melanoma
		Castrate-resistant Prostate Cancer
	Advanced solid tumors (n=21)	Endometrial Cancer
		Non-Small Cell Lung Cancer

	Total (N=43)				
	Age (Yrs, Median, Range)	60 (28-75)	Lines of prior therapy (Median, Range)	3 (1-10)	
	Sex (N, %)		Prior immunotherapy (N, %)		
	Male	25 (58.1)	No	28 (65.1)	
Demographics	Female	18 (41.9)	Yes	13 (32.6)	
	Race (N, %)		Missing	1 (2.3)	
	Asian	1 (2.3)			
	Black/African-American	1 (2.3)			
	White	40 (93.0)			
	Other	1 (2.3)			

Updated safety & efficacy from inupadenant monotherapy – durable responses observed

Most Frequent (≥15%) TEAEs										
	Number of Patients (%)									
Preferred Term	20 mg QD (N=3)	40 mg QD (N=3)	40 mg BID (N=3)	80 mg BID (N=28)	160 mg BID (N=6)	Total (N=43)				
Fatigue	1 (33.3)	2 (66.7)	1 (33.3)	9 (32.1)	4 (66.7)	17 (39.5)				
Anemia	0 (0.0)	2 (66.7)	0 (0.0)	11 (39.3)	1 (16.7)	14 (32.6)				
Decreased appetite	2 (66.7)	1 (33.3)	1 (33.3)	5 (17.9)	3 (50.0)	12 (27.9)				
Constipation	2 (66.7)	1 (33.3)	0 (0.0)	7 (25.0)	1 (16.7)	11 (25.6)				
Aspartate aminotransferase increased	1 (33.3)	1 (33.3)	0 (0.0)	4 (14.3)	2 (33.3)	8 (18.6)				
Alanine aminotransferase increased	2 (66.7)	0 (0.0)	0 (0.0)	3 (10.7)	2 (33.3)	7 (16.3)				
Diarrhoea	0 (0.0)	1 (33.3)	1 (33.3)	4 (14.3)	1 (16.7)	7 (16.3)				
Dyspepsia	0 (0.0)	1 (33.3)	0 (0.0)	4 (14.3)	2 (33.3)	7 (16.3)				
Dyspnoea	0 (0.0)	0 (0.0)	1 (33.3)	3 (10.7)	3 (50.0)	7 (16.3)				
Nausea	1 (33.3)	1 (33.3)	1 (33.3)	3 (10.7)	1 (16.7)	7 (16.3)				

Drug-related SAEs in 3 patients: Acute myocardial infarction (160 mg BID), atrial fibrillation and pericardial effusion (80 mg BID)

2 durable PRs - Castrate-resistant prostate cancer (ongoing), melanoma

1 SD > 1 yr - Sinus carcinoma

2 SDs > 6 mo - Parotid gland carcinoma and lung cancer (ongoing)

Gene Expression Within Tumors

Inupadenant up-regulates immune-related gene signatures in non-progressors

Biomarker Methods

Biopsy collection (1 to 3 per patient)

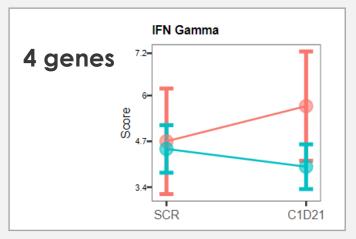
1–28 days prior to study drug treatment (SCR), and post-treatment (C1D21)

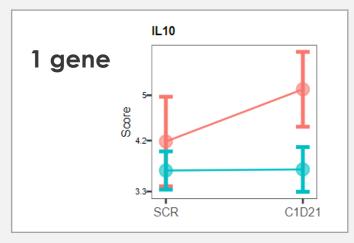
Formalin fixed, paraffin embedded

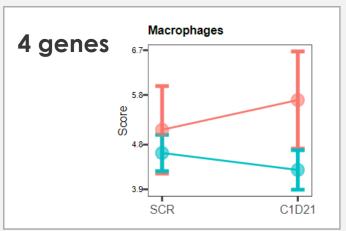
RNA analysis

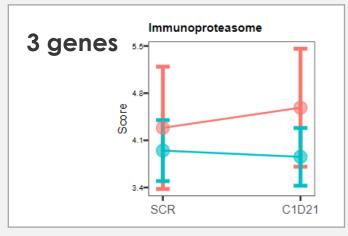
(Nanostring, 780 genes)

Gene signature analysis

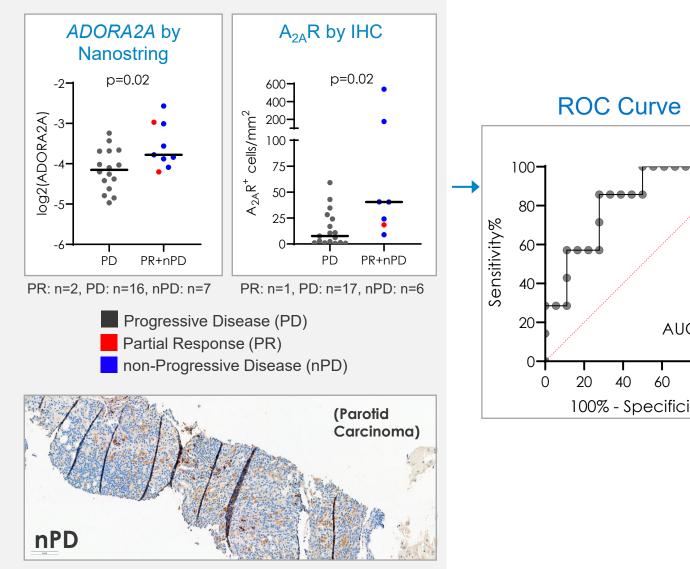

Protein analysis

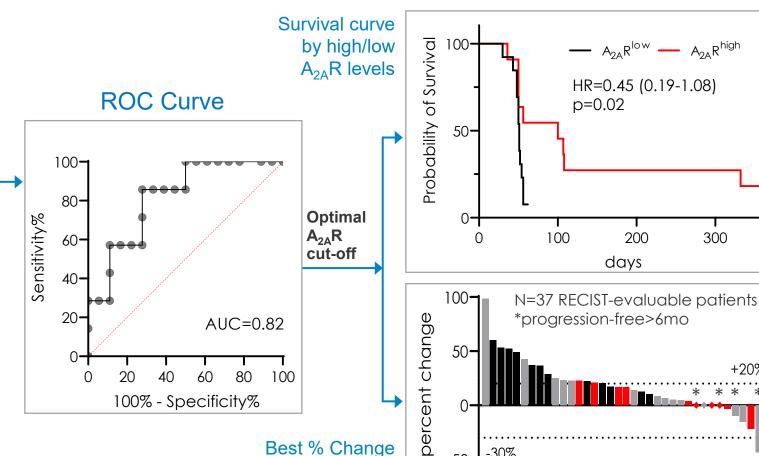

(Immunohistochemistry)


Receiver operating characteristic (ROC) curve analysis


 Cutoff on baseline density of A_{2A}R⁺ cells for survival and lesion size analyses

Gene Signature Analysis by Nanostring

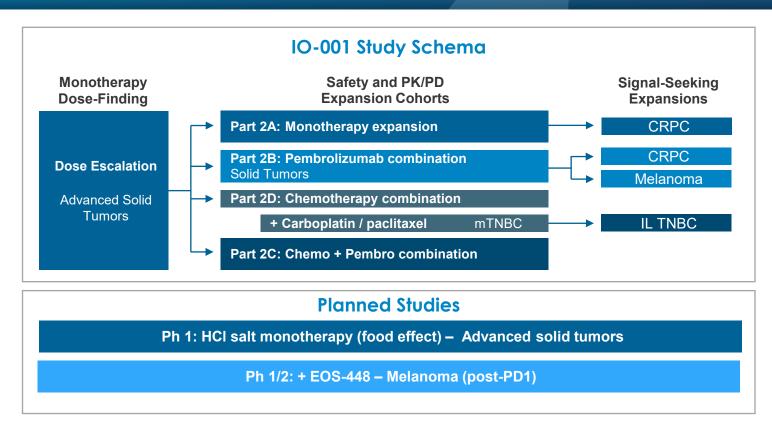

N = 25 patients


Partial Response / non-Progressive Disease (PR/nPD), n=9

Progressive Disease (PD), n=16

A_{2A} Receptor $(A_{2A}R)$ within the tumor

Inupadenant anti-tumor activity is possibly associated with A2AR expression within the tumor area


in Tumor Lesion

by High/Low A_{2A}R levels -50-

300

Inupadenant is tolerated well and shows signs of activity potentially associated with the expression of the A2A receptor within the tumor

- Inupadenant safety in this larger data set is consistent with previously presented data.
- 2 PRs and 3 SDs were durable.
- Analysis of pre-treatment tumor biopsies has identified that A_{2A}R may be associated with clinical outcome. This provides new mechanistic insights, which we are continuing to investigate.
- Expansion arms in the ongoing study will evaluate activity in monotherapy, and in combination with either pembrolizumab, chemotherapy or both.
- Future studies will evaluate $A_{2A}R$ as a potential selection biomarker.

Acknowledgments

Thank you to the participating patients and families

- Investigators and site personnel
- Inupadenant project team
- Mary Moynihan (M2Friend BioCommunications) graphics

